The Néron Model over the Igusa Curves
نویسنده
چکیده
We analyze the geometry of rational p-division points in degenerating families of elliptic curves in characteristic p. We classify the possible Kodaira symbols and determine for the Igusa moduli problem the reduction type of the universal curve. Special attention is paid to characteristic 2 and 3 where wild ramification and stacky phenomena show up.
منابع مشابه
Torsion Points on Elliptic Curves over Function Fields and a Theorem of Igusa
If F is a global function field of characteristic p > 3, we employ Tate’s theory of analytic uniformization to give an alternative proof of a theorem of Igusa describing the image of the natural Galois representation on torsion points of non-isotrivial elliptic curves defined over F . Along the way, using basic properties of Faltings heights of elliptic curves, we offer a detailed proof of the ...
متن کاملComputing Igusa Class Polynomials via the Chinese Remainder Theorem
We present a new method for computing the Igusa class polynomials of a primitive quartic CM field. For a primitive quartic CM field, K, we compute the Igusa class polynomials modulo p for certain small primes p and then use the Chinese remainder theorem and a bound on the denominators to construct the class polynomials. We also provide an algorithm for determining endomorphism rings of Jacobian...
متن کاملNéron models over moduli of stable curves
We construct Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let K = k(B) be a one-dimensional function field and let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(PicXK) −→ B is the base change of Pd,g via the moduli map B −→ Mg of f , that is: N(Pic XK) ∼= Pd,g ×Mg B. Pd,g is compactified by a...
متن کاملNÉRON MODELS AND COMPACTIFIED PICARD SCHEMES OVER THE MODULI STACK OF STABLE CURVES By LUCIA CAPORASO
We construct modular Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let B be a smooth curve and K its function field, let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(PicXK ) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.: N(PicXK ) ∼= Pd,g ×Mg B. Moreover Pd,g is c...
متن کاملNéron models and compactified Picard schemes over the moduli stack of stable curves
We construct modular Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let B be a smooth curve andK its function field, let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(Pic XK) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.: N(Pic XK) ∼= Pd,g ×Mg B. Moreover Pd,g is co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008